
TP-1

bahareh.afshinpour@univ-grenoble-alpes.fr

Main reference:

A First Course in Database Systems (and associated material) by

J. Ullman and J. Widom, Prentice-Hall 1

16.03.2023

Université Grenoble Alpes

VPN

Find your Oracle password

• Le mot de passe Oracle n'est pas celui de votre compte universitaire.

• You can find our documentation here (in French): https://im2ag-
wiki.univ-grenoble-alpes.fr/doku.php?id=environnements:oracle

https://im2ag-wiki.univ-grenoble-alpes.fr/doku.php?id=environnements:oracle

To connect to Oracle (DataGrip)

•DataGrip
• Please note that DataGrip is not free, but teachers and students of

UGA can have the full version for free if you register on their website
with your UGA address as a student/teacher account
: https://www.jetbrains.com/datagrip/

• hostname:im2ag-oracle.univ-grenoble-alpes.fr
• port:1521
• servicename:im2ag

https://www.jetbrains.com/datagrip/

SQL – Structured Query Language

• The most commonly used relational DBMS’S query and modify the
database through a language called SQL.

• The portion of SQL that supports queries has capabilities very close to
relational algebra.

TP

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga

ER Model Description

CREATE TABLE

A table consists of multiple columns.
It consists of perhaps an ID column, perhaps some kind of a name column, maybe some type of a description column.

CREATE TABLE Persons (
ID int NOT NULL PRIMARY KEY,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int

);

CREATE TABLE table_name (
column1 datatype,
column2 datatype,
column3 datatype,
....

);

CREATE TABLE

Create table Gene(GId integer NOT NULL

PRIMARY KEY ,name varchar(100) ,

symbol varchar(100),s integer,

chromosome varchar(150));

Anatomy of SQL statement

• SQL statement
• INSERT (add a new row in a table)

• UPDATE(modify data in a table)

• DELETE(Remove a row from a table)

• Select (you might want to select data or retrieve data from an existing table.)

• FROM clause : It combined with the SELECT clause(statement), would allow you to
specify which table or tables you want to retrieve data from.

• WHERE : WHERE clause lets you filter the data that you want to return.

These are part of the DML statement.
DML is data manipulation language.

Insert statement
• You specify insert into,

• the name of the table.

• the columns that you want to insert the data into.

• the keyword values,

• the data that you want to insert.

INSERT INTO table_name (column1, column2, column3, ...)VALUES (value1, value2, value3,
...);

The table name is not case-sensitive.

INSERT INTO Customers (Id, CustomerName, Address, City, PostalCode, Country)
VALUES (50,'Cardinal', 'Skagen 21', 'Stavanger', '4006', 'Norway');

Without the semicolon, the insert statement would not be processed because Oracle SQL would not be able
to understand where the INSERT statement ends.

The thing is, you have to be careful about
how you structure this.

The format, the syntax, the parentheses,
the commas, the quotes, the semicolons,

everything matters.

Insert statement

INSERT INTO Gene(GId,name,symbol,s, chromosome)

values(11998,'tumor protein p53','P53',25.760 ,'chr17’);

insert into Gene(GId,name,symbol,s, chromosome)

values(20856,'ELN Antisense RNA 1','ELN-AS1', 23.98,'chr7');

To GUI or Not To GUI?

It is better to learn something new from scratch, without much help
from integrated development environments (IDEs), in my experience
because that is the quickest method to understand how a certain
platform operates.

Update statement

• The update statement followed by
• the table in this case, products followed by
• the keywords set.
• the column that you want to change
• the value that you want to change it to
• an optional but very important where clause that filters what particular row

you want to impact as a result of this change.

Update products set productQTY=5 where productID=2

you really don't want to have an update statement without a where clause

SQL – Structured Query Language

• Perhaps the simplest form of query in SQL asks for those tuples of some one
relation that satisfy a condition.

• This simple query, like almost all SQL queries, uses the three keywords. SELECT,
FROM, and WHERE that characterize SQL.

Projection in SQL

Projection in SQL

• Sometimes, we wish to produce a relation with column headers different from
the attributes of the relation mentioned in the From clause.

• We may follow the name of the attribute by the keyword AS and an alias, which
becomes the header in the result relation.

Projection in SQL

• We can use an expression in place of an attribute.

• Lengths would
be calculated in
hours

• Then rename

Case Insensitivity

Selection

• WHERE clause <attribute><operator><value>

• We may build expressions by comparing values using the six common
comparison operators: =, <> , > , <, <= , >=.

Not equal

vol.depart = "Londres"

avion.cap < '300'

avion.type = 'AIRBUS 300'

Selection

22

Select pilote.nom

From pilote

Where pilote.prenom = ‘Antoine’;

numpilote nom prenom

P0001

P0002

P0003

P0004

P0005

P0006

Dupuis

Simon

François

André

Arthur

Mathieu

Antoine

Georges

Luc

Georges

Louis

François

PILOTE

Select pilote.nom

From pilote

Where pilote.prenom = ‘Antoine’;

numpilote nom prenom

P0001

P0002

P0003

P0004

P0005

P0006

Dupuis

Simon

François

André

Arthur

Mathieu

Antoine

Georges

Luc

Georges

Louis

FrançoisSelect pilote.nom

From pilote

Where pilote.prenom = ‘Antoine’;
numpilote nom prenom

P0001 Dupuis Antoine

Selection Example

SELECT Statement

Used for queries on single or multiple tables

Clauses of the SELECT statement:
SELECT

List the columns (and expressions) to be returned from the query

FROM

Indicate the table(s) or view(s) from which data will be obtained

WHERE

Indicate the conditions under which a row will be included in the result

GROUP BY

Indicate categorization of results

HAVING

Indicate the conditions under which a category (group) will be included

ORDER BY

Sorts the result according to specified criteria
23

24

Multirelation Queries

-Interesting queries often combine data from more than one relation.

-We can address several relations in one query by listing them all in the
FROM clause.

-Distinguish attributes of the same name by
“<relation>.<attribute>”

25

Example

Using relations Likes(drinker, beer) and
Frequents(drinker, bar), find the beers liked by at least
one person who frequents Joe’s Bar.

SELECT beer

FROM Likes, Frequents

WHERE bar = ’Joes Bar’ AND

Frequents.drinker =

Likes.drinker;

26

Subqueries That Return One Tuple

-If a subquery is guaranteed to produce one tuple,
then the subquery can be used as a value.

- From Sells(bar, beer, price), find the bars that serve
Miller for the same price Joe charges for Bud.
Two queries would surely work:

1. Find the price Joe charges for Bud.
2. Find the bars that serve Miller at that price.

27

Query + Subquery Solution

SELECT bar

FROM Sells

WHERE beer = ’Miller’ AND

price = (SELECT price

FROM Sells

WHERE bar = ’Joe’’s Bar’

AND beer = ’Bud’);

The price at
which Joe
sells Bud

Give the list of Gene’s symbols.

Output the list of genes whose sizes are larger than 25 bases.

Return the list of authors who studied genes in 2002.

Return the list of authors WHO studied on Gene ID 7809

Output the list of genes that we have information about it in 1997

33

Aggregations

- SUM, AVG, COUNT, MIN, and MAX can be applied to a column in a
SELECT clause to produce that aggregation on the column.

- Also, COUNT(*) counts the number of tuples.

How many papers (studies) do we have in the 2002?

35

Eliminating Duplicates in an Aggregation

- Use DISTINCT inside an aggregation.

- Example: find the number of the different chromosomes that we
have genes in GENE table:

