TP-1

Université Grenoble Alpes

16.03.2023

bahareh.afshinpour@univ-grenoble-alpes.fr

U C_A Main reference:
A A First Course in Database Systems (and associated material) by

Université . .
Grenoble Alpes J. Ullman and J. Widom, Prentice-Hall

VPN

Le VPN
L'utilisation du VPN vous permet a partir de n'importe quel réseau d'acceder aux ressources informatiques du LIG.
Le VPN est désormais proposé par I'Université Grenoble Alpes. La documentation se trouve ici.

Version courte -

« Le VPN de ['Université Grenoble Alpes est ici hitps://vpn_grenet fr
« (Connectez vous en tant que Personnel UGA

Vous pouvez aussi utiliser les bastions ssh

Find your Oracle password

* Le mot de passe Oracle n'est pas celui de votre compte universitaire.

* You can find our documentation here (in French): https://im2ag-
wiki.univ-grenoble-alpes.fr/doku.php?id=environnements:oracle

Connexion Oracle a partir de septembre 2022

|l faut vous connecter en ssh sur le serveur im2ag-oracle.univ-grenoble-alpes.fr avec vos login et mot de passe universitaires |

ssh loginzim2ag-oracle.univ-grenoble-alpes.fr

Ensuite, prenez connaissance de votre mot de passe pour les bases de données Oracle. |l se trouve dans un fichier texte & |a racine
de votre HOME : ~loracle.txt. Votre HOME est monté sur le serveur Oracle, vous pouvez donc utiliser la commande suivante pour

afficher votre mot de passe Oracle

cat ~/oracle.txt

https://im2ag-wiki.univ-grenoble-alpes.fr/doku.php?id=environnements:oracle

To connect to Oracle (DataGrip)

* DataGrip

* Please note that DataGrip is not free, but teachers and students of
UGA can have the full version for free if you register on their website
with your UGA address as a student/teacher account
. https://www.jetbrains.com/datagrip/

* hostname:im2ag-oracle.univ-grenoble-alpes.fr
* port:1521
* servicename:im2ag

https://www.jetbrains.com/datagrip/

SQL — Structured Query Language

* The most commonly used relational DBMS’S query and modify the
database through a language called SQL.

* The portion of SQL that supports queries has capabilities very close to
relational algebra.

D) NATIONAL CANCER INSTITUTE | Search |

About Cancer v Cancer Types v Research~ Grants & Training v News & Events v About NCI +

Home > About NCI > NCI Organization > CCG > Research > Structural Genomics > The Cancer Genome Atlas Program

n]|
K

i The Cancer Genome Atlas Program

Program History > . . :
° d The Cancer Genome Atlas (TCGA), a landmark cancer genomics program, molecularly characterized over 20,000 primary cancer and

TCGA Cancers Selected for Study matched normal samples spanning 33 cancer types. This joint effort between NCI and the National Human Genome Research

Insti nin ingi her r f i n iple institutions.
Publications by TCGA stitute began in 2006, bringing together researchers from diverse disciplines and multiple institutions

Using TCGA > Over the next dozen years, TCGA generated over 2.5 petabytes of genomic, epigenomic, transcriptomic, and proteomic data. The
data, which has already led to improvements in our ability to diagnose, treat, and prevent cancer, will remain publicly available for

Contact anyone in the research community to use.

@
RN Patterns
o s

Processes

Pathways

N

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga

ER Model Description

Clinical

Primary Site

Program

@_' Projects ProjectiD
Case \<@
Bio

Meth _
— Disease Type

Name

in cohort
@

@@\ Gene
_ CNV Gain

Annotation:

Across the GDC

Gene
Consequence Impact
Slmnd>& Consequences -@

Coding DNA

Transcripl(s) Change

Primary Site

Files

CaselD

Project

Slides

N

Genes

SNV

Exp
DNAchange
Somatic Consequences
Across the GDC Mutations eq
in cohort
impact
File Name
Cases
Access Files —@
Asetic Data Format
o File Size —

N

»

Consequence

Primary Site

@ Consequences P A4 Change

Coding DNA
Change

)

Across he GDC

Ralati

onship

henatypical data
report

A
Medical Images

CREATE TABLE

CREATE TABLE table_name (
columnl datatype,
column2 datatype,
column3 datatype,

A table consists of multiple columns.

CREATE TABLE Persons (
ID int NOT NULL PRIMARY KEY,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int

E

It consists of perhaps an ID column, perhaps some kind of a name column, maybe some type of a description column.

CREATE TABLE

Create table Gld integer NOT NULL
PRIMARY KEY ,name varchar(100) ,
symbol varchar(100),s integer,
chromosome varchar(150));

Initially Deferred

Columns

= Column Mame | StudylD

StudylD

Anatomy of SQL statement

* SQL statement

* INSERT (add a new row in a table)
UPDATE(modify data in a table)
DELETE(Remove a row from a table)

These are part of the DML statement.
DML is data manipulation language.

Select (you might want to select data or retrieve data from an existing table.)

FROM clause : It combined with the SELECT clause(statement), would allow you to
specify which table or tables you want to retrieve data from.

WHERE : WHERE clause lets you filter the data that you want to return.

The thing is, you have to be careful about

Insert statement
how you structure this.

* You specify insert into, The format, the syntax, the parentheses,
e the name of the table the commas, the quotes, the semicolons,
' ' _ everything matters.
* the columns that you want to insert the data into.
* the keyword values,
* the data that you want to insert.

INSERT INTO table name (columnl, column2, column3, ...)VALUES (valuel, value2, value3,
N

INSERT INTO Customers (Id, CustomerName, Address, City, PostalCode, Country)
VALUES (50, 'Cardinal’, 'Skagen 21', 'Stavanger', '4006', 'Norway’');

The table name is not case-sensitive.

Without the semicolon, the insert statement would not be processed because Oracle SQL would not be able
to understand where the INSERT statement ends.

Insert statement

INSERT INTO Gld,name,symbol,s, chromosome
values(11998,'tumor protein p53','P53',25.760 ,'chr17’);

Insert into Gld,name,symbol,s, chromosome
values(20856,'ELN Antisense RNA 1''ELN-AS1', 23.98,'chr7’);

To GUI or Not To GUI?

It is better to learn something new from scratch, without much help
from integrated development environments (IDEs), in my experience
because that is the quickest method to understand how a certain
platform operates.

Update statement

Update products set productQTY=5 where productiD=2

* The update statement followed by
* the table in this case, products followed by
the keywords set.
the column that you want to change
the value that you want to change it to

an optional but very important where clause that filters what particular row
you want to impact as a result of this change.

you really don't want to have an update statement without a where clause

SQL - Structured Query Language

* Perhaps the simplest form of query in SQL asks for those tuples of some one
relation that satisfy a condition.

* This simple query, like almost all SQL queries, uses the three keywords. SELECT,
FROM, and WHERE that characterize SQL.

SELECT =
FROM Movies
WHERE studioName = ’Disney’ AND year = 1990;

A Trick for Reading and Writing Queries

It is generally easist to examine a select-from-where query by first looking
at the FROM clause, to learn which relations are involved in the query.
Then, move to the WHERE clause, to learn what it is about tuples that is
important to the query. Finally, look at the SELECT clause to see what
the output is. The same order — from, then where, then select — is often
useful when writing queries of your own, as well.

Projection in SQL

Example 6.2 : Suppose we wish to modify the query of Example 6.1 to produce
only the movie title and length. We may write

SELECT title, length
FROM Movies
WHERE studioName = 'Disney’ AND year = 1990;

The result is a table with two columns, headed title and length. The tuples
in this table are pairs, each consisting of a movie title and its length, such that
the movie was produced by Disney in 1990. For instance, the relation schema
and one of its tuples looks like:

title length
Pretty Woman | 119

1 Thus, the keyword SELECT in SQL actually corresponds most closely to the projection
operator of relational algebra, while the selection operator of the algebra corresponds to the
WHERE clause of SQL queries,

Projection in SQL

* Sometimes, we wish to produce a relation with column headers different from
the attributes of the relation mentioned in the From clause.

* We may follow the name of the attribute by the keyword AS and an alias, which
becomes the header in the result relation.

Example 6.3: We can modify Example 6.2 to produce a relation with at-
tributes name and duration in place of title and length as follows.

SELECT title AS name, length AS duration
FROM Movies
WHERE studioName = ’Disney’ AND year = 1990;

The result is the same set of tuples as in Example 6.2, but with the columns
headed by attributes name and duration. For example,

name duration
Pretty Woman | 119

Projection in SQL

* We can use an expression in place of an attribute.

Example 6.4: Suppose we want output asin Example 6.3, but with the length

in hours. We might replace the SELECT clause of that example with * Lengths would
be calculated in
SELECT title AS name, (length*0.016667 AS lengthInHours hours

~* Thenrename
Then the same maovies would be produced, but lengths would be calculated in

hours and the second column would be headed by attribute lengthInHours,
as:

name lengthInHours
Pretty Woman | 1.98334

Case Insensitivity

Case Insensitivity

SQL is case insensitive, meaning that it treats upper- and lower-case let-
ters as the same letter. For example, although we have chosen to write
keywords like FROM in capitals, it is equally proper to write this keyword
as From or from, or even FrOm. Names of attributes, relations, aliases, and
so on are similarly case insensitive. Only inside quotes does SQL make
a distinction between upper- and lower-case letters. Thus, *FROM’ and
'from’ are different character strings. Of course, neither is the keyword
FROM.

Selection

* WHERE clause <attribute><operator><value>

* We may build expressions by comparing values using the six common
comparison operators: =, <>, >, <, <=, >=,
Not equal

vol.depart = "Londres"
avion.cap < '300"
avion.type = '"AIRBUS 300"

Selection

SQL Queries and Relational Algebra

The simple SQL queries that we have seen so far all have the form:

SELECT L
FROM R
WHERE C

in which L is a list of expressions, R is a relation, and C is a condition.
The meaning of any such expression is the same as that of the relational-
algebra expression

7L (oc(R))

That is, we start with the relation in the FROM clause, apply to each tuple
whatever condition is indicated in the WHERE clause, and then project onto
the list of attributes and/or expressions in the SELECT clause.

Selection Example

PILOTE
numpilote nom | prenom
From pilote e
P0003 Frangois | Luc
P0004 André | Georges
P0005 Arthur | Louis
P0006 Mathieu | Francois
numpilote| nom prenom
From pilote PO001 Dupuis | Antoine
: — : ;. P0002 Simon | Georges
Where pililote.prenom = ‘Antoilne'’j PO003 Francois | Luc
P0004 André | Georges
P0005 Arthur | Louis
Select pilote.nom P0006 Mathieu | Francois
From pilote | numpilote| nom | prenom |

‘Antoine’ ;
22

Where pilote.prenom = Dupuis

SELECT Statement

Used for queries on single or multiple tables

Clauses of the SELECT statement:

+SELECT

X List the columns (and expressions) to be returned from the query
+FROM

X Indicate the table(s) or view(s) from which data will be obtained
+WHERE

X Indicate the conditions under which a row will be included in the result
+GROUP BY

X Indicate categorization of results
+HAVING

X Indicate the conditions under which a category (group) will be included
+ORDER BY

X Sorts the result according to specified criteria

Multirelation Queries

-Interesting queries often combine data from more than one relation.

-We can address several relations in one query by listing them all in the
FROM clause.

-Distinguish attributes of the same name by
“<relation>.<attribute>"

24

Example

OUsing relations Likes(drinker, beer) and
Frequents(drinker, bar), find the beers liked by at least

one person who frequents Joe’s Bar.
SELECT beer
FROM Likes, Frequents

WHERE bar = "Joes Bar’ AND

Frequents.drinker =
Likes.drinker;

Subqueries That Return One Tuple

-If a subquery is guaranteed to produce one tuple,
then the subquery can be used as a value.

- From Sells(bar, beer, price), find the bars that serve
Miller for the same price Joe charges for Bud.
Two queries would surely work:

1. Find the price Joe charges for Bud.

2. Find the bars that serve Miller at that price.

26

Query + Subquery Solution

SELECT bar
FROM Sells
WHERE beer ="Miller” AND

price =

The price at
whichJoe. —

sells Bud

27

Give the list of Gene’s symbols.

O console B STUDY B GEME

Output the list of genes whose sizes are larger than 25 bases.

FH STUDY Y GENE
}" Tx: Manus

B output R AFSHINPE.GENE

S @

3 SYMBOL
1 P53

Return the list of authors who studied genes in 2002.

O console E STUDY E GEME

Cutput FFH AFSHINPB.STUDY

Return the list of authors WHO studied on Gene ID 7809

A STUDY EH GENE

E output B AFSHINPBE.STUDY

S @ +
T YEAR

1 1997

Output the list of genes that we have information about it in 1997

O console BR sTUDY R GEME
G} }‘ Tz Manua

B Output EEH AFSHINPE.GEME

Aggregations

- SUM, AVG, COUNT, MIN, and MAX can be applied to a column in a
SELECT clause to produce that aggregation on the column.

- Also, COUNT(*) counts the number of tuples.

33

How many papers (studies) do we have in the 20027

Output EH count*:NUMEER

S Q

Eliminating Duplicates in an Aggregation

- Use DISTINCT inside an aggregation.

- Example: find the number of the different chromosomes that we
have genes in GENE table:

conscle R LESAMIMALX FH GEME BR sTuDY R EMPL BH ASG

35

